44 research outputs found

    Cadmium isotopic composition in the ocean

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 70 (2006): 5104-5118, doi:10.1016/j.gca.2006.07.036.The oceanic cycle of cadmium is still poorly understood, despite its importance for phytoplankton growth and paleoceanographic applications. As for other elements that are biologically recycled, variations in isotopic composition may bring unique insights. This article presents i) a protocol for the measurement of cadmium isotopic composition (Cd IC) in seawater and in phytoplankton cells; ii) the first Cd IC data in seawater, from two full depth stations, in the northwest Pacific and the northwest Mediterranean Sea; iii) the first Cd IC data in phytoplankton cells, cultured in vitro. The Cd IC variation range in seawater found at these stations is not greater than 1.5 eCd/amu units, only slightly larger than the mean uncertainty of measurement (0.8 eCd/amu). Nevertheless, systematic variations of the Cd IC and concentration in the upper 300m of the northwest Pacific suggest the occurrence of Cd isotopic fractionation by phytoplankton uptake, with a fractionation factor of 1.6±1.4 eCd/amu units. This result is supported by the culture experiment data suggesting that freshwater phytoplankton (Chlamydomonas reinhardtii and Chlorella sp.) preferentially take up light Cd isotopes, with a fractionation factor of 3.4±1.4 eCd/amu units. Systematic variations of the Cd IC and hydrographic data between 300 and 700m in the northwest Pacific have been tentatively attributed to the mixing of the mesothermal (temperature maximum) water (eCd/amu=-0.9±0.8) with the North Pacific Intermediate Water (eCd/amu=0.5±0.8). In contrast, no significant Cd IC variation is found in the northwest Mediterranean Sea. This observation was attributed to the small surface Cd depletion by phytoplankton uptake and the similar Cd IC of the different water masses found at this site. Overall, these data suggest that i) phytoplankton uptake fractionates Cd isotopic composition to a measurable degree (fractionation factors of 1.6 and 3.4 eCd/amu units, for the in situ and culture experiment data, respectively), ii) an open ocean profile of Cd IC shows upper water column variations consistent with preferential uptake and regeneration of light Cd isotopes, and iii) different water masses may have different Cd IC. This isotopic system could therefore provide information on phytoplankton Cd uptake and on water mass trajectories and mixing in some areas of the ocean. However, the very small Cd IC variations found in this study indicate that applications of Cd isotopic composition to reveal aspects of the present or past Cd oceanic cycle will be very challenging and may require further analytical improvements. Better precision could possibly be obtained with larger seawater samples, a better chemical separation of tin and a more accurate mass bias correction through the use of the double spiking technique

    Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES-Era Data

    Get PDF
    86 pages, 33 figures, 2 tables, 1 appendix.-- Data Availability Statement: The majority of the dissolved data were sourced from the GEOTRACES Intermediate Data Products in 2014 (Mawji et al., 2015) and 2017 (Schlitzer et al., 2018), and citations to the primary data sources are given in the caption for each figure. Data sources for Figure 1 are given below. Figure 1: Iron: Conway & John, 2014a (Atlantic); Conway & John, 2015a (Pacific); Abadie et al., 2017 (Southern). Zinc: Conway & John, 2014b (Atlantic); Conway & John, 2015a (Pacific); R. M. Wang et al., 2019 (Southern). Copper: Little et al., 2018 (Atlantic); Takano et al., 2017 (Pacific); Boye et al., 2012 (Southern). Cadmium: Conway and John, 2015b (Atlantic); Conway & John, 2015a (Pacific); Abouchami et al., 2014 (Southern). Molybdenum: Nakagawa et al., 2012 (all basins). Barium: Bates et al., 2017 (Atlantic); Geyman et al., 2019 (Pacific); Hsieh & Henderson, 2017 (Southern). Nickel: Archer et al., 2020 (Atlantic); Takano et al., 2017 (Pacific); R. M. Wang et al., 2019 (Southern). Chromium: Goring-Harford et al., 2018 (Atlantic); Moos & Boyle, 2019 (Pacific); Rickli et al., 2019 (Southern). Silver: Fischer et al., 2018 (Pacific); Boye et al., 2012 (Southern)Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES-era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth's climate historyThis contribution grew (and grew) out of a joint workshop between GEOTRACES and Past Global Changes (PAGES) held in Aix-en-Provence in December 2018. The workshop was funded by the U.S. National Science Foundation (NSF) through the GEOTRACES program, the international PAGES project, which received support from the Swiss Academy of Sciences and NSF, and the French program Les Envelopes Fluides et l'Environnement. [...] T. J. Horner acknowledges support from NSF; S. H. Little from the UK Natural Environment Research Council (NE/P018181/1); T. M. Conway from the University of South Florida; and, J. R. Farmer from the Max Planck Society, the Tuttle Fund of the Department of Geosciences of Princeton University, the Grand Challenges Program of the Princeton Environmental Institute, and the Andlinger Center for Energy and the Environment of Princeton University. [...] With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S

    Differentiating Lithogenic Supplies, Water Mass Transport, and Biological Processes On and Off the Kerguelen Plateau Using Rare Earth Element Concentrations and Neodymium Isotopic Compositions

    Get PDF
    Distributions of dissolved rare earth element (REE) concentrations and neodymium isotopic compositions (expressed as ΔNd) of seawater over and off the Kerguelen Plateau in the Southern Ocean are presented. The sampling took place during the austral spring bloom in October–November 2011 (KEOPS2 project, GEOTRACES process study) and aimed to further the investigations of the KEOPS1 austral summer study in terms of sources and transport of lithogenic material, and to investigate the impact of local biogeochemical cycles on the REE distributions. The REE signature of the coastal eastern Kerguelen Islands waters was characterized by negative europium anomalies (Eu/Eu*) and negative ΔNd in filtered samples. By contrast, the unfiltered sample showed a positive Eu/Eu* and more radiogenic ΔNd. These distinct signatures could reflect either differential dissolution of the local flood basalt minerals or differential leaching of local trachyte veins. The dissolved Kerguelen coastal REE patterns differ from those observed close to Heard Island, these latter featuring a positive Eu/Eu* and a less radiogenic ΔNd (Zhang et al., 2008). These differences enabled us to trace the transport of waters (tagged by the Kerguelen REE signature) 200 km downstream from the coastal area, north of the Polar Front. Northward transport of the central Plateau shallow waters, enriched by both local vertical supplies and lateral advection of inputs from Heard Island, was also evident. However, the transport of Kerguelen inputs southeastward across the Polar Front could not be discerned (possibly as a result of rapid dilution or scavenging of REE signatures), although evidence for such transport was found previously using Ra isotopes (Sanial et al., 2015). Comparison of the REE patterns at stations sampled prior, during and at the demise of the bloom revealed diverse fractionations, including production of significant lanthanum and europium anomalies, which are tentatively ascribed to chemical reactions with various inorganic and biogenic phases, including surface coatings, barite crystals, and biogenic silica

    Global perspectives on observing ocean boundary current systems

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-? data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes

    Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean

    No full text
    As an essential micronutrient, iron plays a key role in oceanic biogeochemistry. It is therefore linked to the global carbon cycle and climate. Here, we report a dissolved iron (DFe) isotope section in the South Atlantic and Southern Ocean. Throughout the section, a striking DFe isotope minimum (light iron) is observed at intermediate depths (200–1,300 m), contrasting with heavier isotopic composition in deep waters. This unambiguously demonstrates distinct DFe sources and processes dominating the iron cycle in the intermediate and deep layers, a feature impossible to see with only iron concentration data largely used thus far in chemical oceanography. At intermediate depths, the data suggest that the dominant DFe sources are linked to organic matter remineralization, either in the water column or at continental margins. In deeper layers, however, abiotic non-reductive release of Fe (desorption, dissolution) from particulate iron—notably lithogenic—likely dominates. These results go against the common but oversimplified view that remineralization of organic matter is the major pathway releasing DFe throughout the water column in the open ocean. They suggest that the oceanic iron cycle, and therefore oceanic primary production and climate, could be more sensitive than previously thought to continental erosion (providing lithogenic particles to the ocean), particle transport within the ocean, dissolved/particle interactions, and deep water upwelling. These processes could also impact the cycles of other elements, including nutrients

    Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water

    No full text
    The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large-scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present-day NADW Nd IC is well characterized at epsilon(Nd) = - 13.5, the acquisition of this isotopic signature ( in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre ( SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, epsilon(Nd) = - 13.9 +/- 0.4), North East Atlantic Deep Water (NEADW, epsilon(Nd) - 13.2 +/- 0.4), and North West Atlantic Bottom Water ( NWABW, epsilon(Nd) - 14.5 +/- 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/ seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs
    corecore